
RGG 2017.3

A Recalcitrant Syncretism
Tarald Taraldsen
Universit൰ of Tromsø

1 The Issue
In Romanian, a class of (neuter) nouns inflect like masculine nouns in
the singular and like feminine nouns in the plural:1

(1) m n f
sg nom/acc N-u N-u N-ă

gen/dat N-u N-u N-e
pl nom/acc N-i N-e N-e

gen/dat N-i N-e N-e

Likewise, articles and modifiers agreeing with a noun in this class have
the same form as articles and modifiers agreeing with a masculine noun
in the singular, but the same form as articles and nouns agreeing with a
feminine noun in the plural. I will use the term ‘neuter nouns’ to refer
to the members of the relevant class.2
In addition, the f.sg.dat/gen is identical to the f.pl (in all cases).3

This syncretism, however, plays only a marginal role in what follows. I
will show in section 4 that a paradigm like (2), where all f.sg forms are
identical to each other and distinct from the f.pl forms, presents exactly
the same type of analytical challenges as the paradigm (1).

1I proceed on the assumption that the m/n.sg ending is -u, which is dropped in word-
final position except after certain consonant clusters, e.g. codru ‘wood’. Some neuter
nouns have the plural ending -uri, which likewise triggers feminine plural agreement,
but which is not found on feminine nouns, except for vreme–vremuri ‘time’. I tentat-
ively assume that this calls for a distinction between declension classes similar to the
Latin contrast between templum.sg / templa.pl ‘temple’ and tempus / tempora ‘time’
(Romanian timp / timpuri). Adjectival inflection is identical to nominal inflection. The
inflection of the definite article raises issues that will not be addressed here.
2Many of these neuter nouns descend from Latin neuter nouns.
3Both the f.sg.dat/gen e and the f.pl e are replaced by i in certain nouns, e.g. bu-

nică–bunici–bunici ‘grandmother’ and ramură–ramuri–ramuri ‘branch’. This alternation
may be phonologically controlled.

RGG 2017.3

(2) m n f
sg nom/acc N-u N-u N-ă

gen/dat N-u N-u N-ă
pl nom/acc N-i N-e N-e

gen/dat N-i N-e N-e

In other words, whether or not f.sg.dat/gen = f.pl neither improves or
complicates the situation. The paradigm in (1) exhibits no ABA patterns
and should be obtainable by positing lexical entries that will make neu-
ter nouns syncretic with masculine nouns in the singular and syncretic
with feminine nouns in the plural. But we will see that the paradigm
cannot actually be derived on standard nanosyntactic assumptions as I
understand them.4

2 Bridging fseq gaps
The distribution of forms in (1) is controlled by three different sets of
features: gender features, number and case features. Correspondingly,
the lexical entries we need will consist of three different layers. To make
it possible for the neuter nouns to syncretise both with masculine nouns
and feminine nouns, one must decompose the traditional gender features
into sets of more primitive features as in (3a) or (3b):
(3) a. feminine = [f [n [m]]] >

neuter = [n [m]] >
masculine = [m]

b. masculine = [m [n [f]]] >
neuter = [n [f]] >
feminine = [f]

To create the syncretism between the f.sg.dat/gen and the f.pl, num-
ber must also be broken up into two features, e.g. plural = [pl [sg]] >
sg.5 Likewise, case will be represented as originally proposed by Caha
(2009).
Suppose nowwe go by (3a) and try to capture the syncretism between

masculine and neuter nouns in the singular by positing the entry in (4):6
4It is also not possible to adapt Caha’s (2016) treatment of the Czech f/n.sg.gen

= f/n.pl.acc/nom syncretism since n.sg.gen ending is not identical to n.pl in Ro-
manian.
5Alternatively, the singular is just the absence of a number feature. As far as I can

tell, this would not affect the conclusions in the text.
6It has been pointed out in the literature that using pointers leads to the predic-

tion that certain ABA patterns should be possible (Taraldsen 2012; Vanden Wyngaerd

2

Tarald Taraldsen A Recalcitrant Syncretism

(4) u↔ [sg [n [m]]]
If matching is defined as in (5) (‘bidirectional mapping’), (4) will not
apply to a masculine noun, since the node n in (4) finds no match in (6):
(5) The tree X in an entry M↔ X matches a tree Y generated by the

syntax if and only if the root node A of Y has the same label as a
node B in X and
(i) every daughter of A matches a daughter of B and
(ii) every daughter of B matches a daughter of A.

(6) [sg [m]]
Similarly, if we go by (2b), we will have (7), which will not be applicable
to neuter nouns (in (8)), because of clause (ii) of (5):
(7) u↔ [sg [m [n [f]]]]
(8) [sg [n [f]]]
In the next subsection, we will see that there is no solution based on
‘pointers’ following the proposal by Caha & Pantcheva (2012), because
neuter nouns syncretize both with masculine nouns and feminine nouns.
Then, I will look at the prospects of deriving the paradigm in (1) by

removing clause (ii) from (5), as suggested by Pavel Caha (p.c.):
(9) The tree X in an entry M↔ X matches a tree Y generated by the

syntax if and only if the root node A of Y has the same label as a
node B in X and every daughter of A matches a daughter of B.

It will turn out that (1) is still intractable.

3 No account using pointers
As already stated, I begin by abstracting away from f.pl= f.sg.dat/gen
and case features will therefore not appear in any structural representa-
tions. I also assume that n.sg = m.sg, n.pl = f.pl require f > n > m or
m > n > f because of *ABA.
For either arrangement x > n > y, the syncretism of n with x and

the syncretism of n with y call for pointers to two distinct morphemes
M and F that must determine the choice of the correct surface ending
when the number layer is reached. But the smaller one of M and F will
block the bigger one for [n [x]] by the Elsewhere Principle.
2018).

3

RGG 2017.3

Assuming f > n > m, n.sg = m.sg leads to postulating the following
entries (with (10) the item pointed to by (11)):
(10) M↔ [n [m]]
(11) u↔ [sg [M]]
Accounting for n.pl = f.pl would require (12)-(13) (where likewise (13)
contains a pointer to (12)):
(12) F↔ [f [n [m]]]
(13) e↔ [pl [sg [F]]]
but by the Elsewhere Principle, (10) blocks (12) for [n [m]], with the
consequence that -e is not assigned to neuter nouns in the plural.
With m > n > f, we would have (14)-(15) to account for n.sg =

m.sg.
(14) M↔ [m [n [f]]]
(15) u↔ [sg [M]]
and n.pl = f.pl must be obtained by positing (16)-(17):
(16) F↔ [n [f]]
(17) e↔ [pl [sg [F]]]
By the Elsewhere Principle, (16) blocks (14) for [n [f]] so that the n.sg
should now have the ending -e. Thus, adopting (5) and using pointers
to bridge fseq gaps seems to fail to provide an account of the Romanian
facts. But I will return to this issue in section 6.

4 No account using unidirectional matching
Abandoning pointers in favor of ‘unidirectional matching’ as defined in
(9), we will still find that the paradigm in (1) cannot be derived even
when abstracting away from f.pl = f.sg.dat/gen, i.e. if the paradigm
were to have been as in (2). Essentially, the problem is now that differen-
tiating forms based on gender distinctions is rendered impossible by the
fact that the difference between the number of heads in the gender layer
in two entries can be neutralized by the number of heads in higher layers
and vice versa so that the Elsewhere Principle fails to choose between
two competing entries.
Starting with f > n > m (and still leaving out case features), n.sg =

m.sg should be attributed to the entry in (18):

4

Tarald Taraldsen A Recalcitrant Syncretism

(18) u↔ [sg [n [m]]]
Since the plural -i is unique to masculine nouns, we will also have:
(19) i↔ [pl [sg [m]]]
but (18) and (19) are the same size so that the Elsewhere Principle will
not prevent -i from occurring also on masculine singular nouns in free
variation with -u. (One will notice that the extra node that makes (18)
as big as (19) is the n that would make (18) inapplicable to masculine
nouns under bidirectional matching.)
Shifting to m> n> f doesn’t help. The entry in (20) will now account

for n.sg = m.sg while (21) accounts for n.pl = f.pl:
(20) u↔ [sg [m [n [f]]]
(21) e↔ [pl [sg [n [f]]]
but (20) and (21) are the same size and so, n.sg = e is not excluded.

5 Adding f.pl = f.sg.dat/gen doesn’t help
We have seen that a paradigm like (2), which differs from (1) in that there
is no case-sensitive sg = pl syncretism, cannot be derived on standard
assumptions.
Putting f.pl = f.sg.dat/gen back in so that we return to (1), does

not alleviate our problems. Assuming f > n > m, we would have (22)-
(23), which are identical to (18)-(19) (repeated below as (24)-(25)) with
the same number of case features added to each:
(22) u↔ [dat [gen [acc [nom [sg [n [m]]]]]]]
(23) i↔ [dat [gen [acc [nom [pl [sg [m]]]]]]]
(24) u↔ [sg [n [m]]]
(25) i↔ [pl [sg [m]]]
So, the Elsewhere Principle still does not prevent -i from occurring in
masculine singular nouns. In addition, adding case features leads to a
new problem. Capturing f.pl = f.sg.dat/gen = e while f.sg.acc/nom
= a, requires (26)-(27):
(26) e↔ [dat [gen [acc [nom [pl [sg [f [n [m]]]]]]]]]
(27) ă↔ [acc [nom [sg [f [n [m]]]]]]
But (27) is smaller than (22) so that n/m.sg.acc/nom should have a
rather than u. Adopting m > n > f removes this problem, but another

5

RGG 2017.3

problem remains. We would now have:
(28) e↔ [dat [gen [acc [nom [pl [sg [n [f]]]]]]]]
(29) ă↔ [acc [nom [sg [f]]]]
(30) i↔ [dat [gen [acc [nom [pl [sg [m [n [f]]]]]]]]]
(31) u↔ [dat [gen [acc [nom [sg [m [n [f]]]]]]]]
(28) and (31) are the same size so that n.sg should alternate freely
between u and e.

6 Discussion
The singular form of neuter nouns in Romanian seems to be inherited
from Latin where singular neuter and masculine nouns also had the same
inflection except in the nominative. But the n.pl = f.pl syncretism is
unexpected in this perspective. In Latin, neuter nouns had the ending
-a in the nominative and the accusative case in the plural contrasting
both with the masculine ending and the feminine -ae (nominative) and
-as (accusative) in the declension classes were feminine nouns inflect
differently from masculine nouns. While the Romanian plural -e is a
predictable reflex of -ae in phonological terms, it seems unlikely that
it could also have derived from the n.pl -a. That is, it seems unlikely
that n.pl = f.pl = -e could be set aside as an instance of accidental
homophony due to sound change.
If so, it seems significant that the paradigm in (1) cannot be derived

by the usual tools made available by Nanosyntax, and we should look
for ways of adding or refining our assumptions. In particular, one might
want to take a closer look at the Elsewhere Principle.
In the preceding discussion of the analytical options, it was taken for

granted that this principle simply compares the number of nodes in com-
peting entries. In particular, all the problems that have arisen along the
way, are due to the assumption that nodes in different structural layers
(or ‘sub-fseqs’) are weighted equally at any point of the lexicalization
process. But I have not been able to find a way of changing this that
would be consistent with the fact examined here.
Also, the problems identified in sections 4 and 5 would not have

arisen if we didn’t adopt the definition of matching in (9) (unidirectional
matching) instead of the one in (5) (bidirectional matching). But given
what we saw in section 3, sticking with (5) seems impossible to the extent
that (5) calls for pointers.
However, there is a way of overcoming the problem discussed in sec-

tion 3, if the standard nanosyntactic toolbox is enriched by a last resort

6

Tarald Taraldsen A Recalcitrant Syncretism

mechanism allowing the lexicalization procedure to backtrack and over-
write an earlier choice enforced by the Elsewhere Principle if it turns out
that this earlier choice makes full lexicalization impossible. Suppose, for
example, we posit the entries (32)-(35), where pointers appear only as
needed in view of (5):
(32) u↔ [dat [gen [acc [nom [sg [M]]]]]]
(33) i↔ [dat [gen [acc [nom [pl [sg [m]]]]]]]
(34) e↔ [dat [gen [acc [nom [pl [sg [F]]]]]]]
(35) ă↔ [acc [nom [sg [f [n [m]]]]]]
By (5), (33) is inapplicable to singular nouns, and is correctly confined to
masculine plural nouns, and (35) is only applicable to feminine singular
nouns.
The pointers to M and F are introduced by (36)-(37) (identical to

(10) and (12) in section 3):
(36) M↔ [n [m]]
(37) F↔ [f [n [m]]]
In section 3, we observed that the Elsewhere Principle would select M
over F for the input [n [m]], raising the question how (34) could ever
get to assign -e to neuter plural nouns. But notice that neither (33) nor
(34) is applicable to (38) with M previously chosen as the spellout of [
n [m]]:
(38) [pl [sg [M]]]
In other words, the number features cannot be lexicalized. At this stage
of the derivation, I suggest, the system backtracks to the point where [
n [m]] was lexicalized by M and removes M as a candidate so that F is
chosen instead. If so, the e will subsequently be introduced into neuter
plural nouns by (34) applying to [pl [sg [F]]].
If this suggestion is on the right track, bidirectional matching as

defined in (5) must be maintained together with the use of pointers. But
as noted in footnote 6, the use of pointers allows certain ABA patterns to
be created, and the question should be examined whether these patterns
are robustly documented.

References
Caha, Pavel. 2009. The nanosyntax of case. Available at
http://ling.auf.net/lingBuzz/000956. CASTL Tromsø dissertation.

7

RGG

Caha, Pavel. 2016. GEN.SG = NOM.PL: a mystery solved? In Markéta
Ziková & Pavel Caha (eds.), Linguistica brunensia. a special issue dedic-
ated to petr karlík, 25–40. Brno: Masaryk University.

Caha, Pavel & Marina Pantcheva. 2012. Tools in Nanosyntax. Handout
for a talk given at Decennium: The First Ten Years of CASTL.

Taraldsen, Tarald. 2012. *ABA and the representation of features in syn-
tax. Talk presented at BCGL 7, Brussels.

Vanden Wyngaerd, Guido. 2018. The feature structure of pronouns: a
probe into multidimensional paradigms. In Lena Baunaz, Karen De
Clercq, Liliane Haegeman & Eric Lander (eds.), Exploring nanosyntax,
277–304. Oxford: Oxford University Press.

8

	The Issue
	Bridging fseq gaps
	No account using pointers
	No account using unidirectional matching
	Adding f.pl = f.sg.dat/gen doesn't help
	Discussion

