Cartography and Locality in German: a quantitative study with dependency structures

Giuseppe Samo

BEIJING LANGUAGE AND CULTURE UNIVERSITY

Abstract. This paper investigates theoretical considerations on cartography and locality (Rizzi & Cinque 2016) with respect to grammatical structures in German, adopting quantitative tools and large-scale syntactically annotated corpora. German has represented an interesting case in the literature allowing restrictions (bottleneck effect) and freedom of movements (scrambling) of the constituents in different areas of the structures. Both phenomena can be explained in terms of locality (Samo 2019), which is quantitatively tested here. After having presented a model for mapping cartographic projections into universal dependencies (Nivre 2015), a quantitative study is carried out. Results confirm that the more dissimilar in terms of classes of features (Rizzi 2004) two elements are, the higher the frequency of an element lower in the structure in crossing an intervener. These results aim to add a quantitative dimension to the qualitative descriptions provided in cartographic studies.

Keywords: Cartography, Locality, German, Quantitative, Dependencies

1 Introduction

In this work, I will adopt quantitative tools to investigate the interactions between frequency and locality principles adopting the guidelines of the Cartography of Syntactic Structures (Cinque & Rizzi 2010, Rizzi & Cinque 2016). This paper targets two goals. The first aim is to investigate whether the predictions provided by cartographic studies concerning the loci of generation result in frequencies extracted from syntactically annotated treebanks. The second research question focuses on how locality principles interact with the computation of grammatical structures naturally occurring in corpora.
To verify these dimensions, a mapping of cartographic functional projections to syntactic annotation schemata is required. In this work, the reorderings of syntactic constituents are retrieved from a set of treebanks annotated under the guidelines of the Universal Dependencies (henceforth UD, Nivre 2015, Zeman, Nivre & Abrams 2020).

Following Belletti (2018), the displacement of syntactic units is observed as a phenomenon involving a dependency relation whereby a constituent is interpreted simultaneously in two different positions. The hierarchically lower position is the referred to as the (base-)generation position, whereas the hierarchically higher one, tendentially overt at phonological form, is labelled as a landing site for movement. Let us consider the canonical case of a wh-question in English, given in (1).

(1) *Which book are you reading* <*which book*>?

The sentence in (1) contains an interrogative element *which book* occurring at the very beginning of the clause, guaranteeing that the clause is to be interpreted as a question on the object in English; at the same time, the “copy” of the interrogative element, in hook brackets, is interpreted as an element of the argumental structure. The constituent *which book* is externally merged in the vP layer and then internally merged in a dedicated left peripheral position hosting interrogative elements to allow the interpretation “for which x, you are reading”. Functional projections hosting moved elements are referred to as scope-discourse phenomena (e.g. topic structure like, relative clauses, etc.) and discussed in detail in the cartographic literature since earlier seminal works (Rizzi 1997). Studies in syntactic cartography (Cinque & Rizzi 2010, Rizzi & Cinque 2016) have provided formal tools to understand reorderings in the light of syntacticization (Rizzi 2013). The derived syntactic maps, beyond their heuristic capacity of describing linguistic variability are designed to offer transparent configurations for interpretative routines to be applied on, ultimately calling forth to the syntacticization of semantics, pragmatic and prosodic properties (Rizzi 2013).

This paper outlines a system of mapping cartographic projections to UD schemata, in order to add a quantitative dimension to the established qualitative descriptions. The quantitative results are to be read in the spirit of Quantitative Computational Syntax (Merlo 2016): differentials in counts are the expression of underlying grammatical properties (Merlo 2016, Samo & Merlo 2019). The analysis here is developed on a series of treebanks of German of different genres and sizes, annotated under the guidelines of UD.

1. Similar mappings of UD has been proposed, such as the transformation of UD into logical forms for semantic parsing, Reddy et al. 2016).
Dimensions of variation in the analysis of the reordering of constituents shall be observed: quantitative syntax is able to provide further insights on the nature of theoretical proposals, in terms of maps and principles.

In §2 I shall present the tools I adopt for the analysis, namely cartographic maps and definitions of reorderings and locality. In §3 I develop a model of transformation of syntactic dependencies into a series of cartographic projections. In §4 I present the empirical data extracted from a series of UD-treebanks from German. Finally, §5 summarizes and concludes.

2 Reordering and cartographic maps in German

2.1 Reordering, cartography and locality

One of the most easily observable distinguishing features of natural languages is word order (Greenberg 1975 *inter alia*), the order in which the verb and its core arguments occur. Typological results assume that languages adopt one of the factorial combinations of the core elements Verb (V), Subject (S) and Object (O) as “canonical” following Kayne (1994) and Cinque (1999). I add also non-core constituents like adverbials and modifiers as part of the “canonical” order of natural languages.

With the term “canonical”, I refer to as the standard ordering of constituents in which informational properties are clause related or about the subject (Rizzi 2015; Belletti & Rizzi 2017).

Every reordering of the “canonical” order leads to (i) an ungrammatical sentence or (ii) a *grammatical* (semantico-pragmatic) marked option. Let us observe the case of a SVO language like English: while a structure as in (1) is a case of a *grammatical* reordering triggered by discourse...

2. I will not discuss the notion of *unfixed* word order (Dryer 2005).
4. I propose that in every language, for every canonical word order, constituents undergo two main types of movements from their generation locus. A first type of movement is a *meaningless movement* (Cinque 2018), that I here interpret as the movement to reach the canonical orders. A second type of movement is a *meaningful movement*, triggered for discourse requirements (Rizzi 1997, e.g. Topic, Focus). I will refer to as this type of movement as criterial movement. There are also intermediate types of movement, such as the movement of verbal chunks in the IP (Belletti & Rizzi 2012) and or movements in relation with other phenomena such as smuggling (Collins 2005). The analysis here focuses only on criterial movements.
requirements (a question on the object), a reordering having the object displaced between the subject and the inflected verb (e.g. *You which book are reading?) results in an ungrammatical sentence.

The function of the displaced element, the loci involved in the displacement and other principles have been crosslinguistically investigated in syntactic theory. The cartography of syntactic structures (Cinque & Rizzi 2010, Rizzi & Cinque 2016) observes reorderings in terms of syntacticization (Rizzi 2013): functional projections provide instructions at the interfaces with the systems of sound and meaning (Rizzi 2013, Bocci 2013). In other words, cartographic maps describe a typology of functional projections within the syntactic architecture. The analysis here focuses on two types of functional positions. Positions where syntactic elements are generated and positions where syntactic elements can move to.

Here, **generation positions** represent the loci where syntactic elements are generated (cf. the position in hook brackets in [1]), whereas **landing sites** describe those functional projections where elements move to satisfy criterial requirements (Rizzi 2007, 2015) and give instructions to the systems of meaning and sound for interpreting the moved element in terms of the appropriate notion and/or through the assignment of the appropriate intonational contour (Bocci 2013). The grammatical orders resulting from this displacement are labelled here as "uncanonical".

Following a the criterial approach to scope-discourse semantics (Rizzi 2007), a syntactic element respectively externally and internally merges in at least two positions dedicated to two kinds of interpretative properties, as given in (2).

(2) Merging positions in criterial configurations

i. A **generation position**, where
 a. the element is "generated",
 b. the verb assigns an argument role to the "generated" element;

ii. a **landing position**, where
 a. the element moves to,
 b. the properties of scope-discourse semantics of the moved element are interpreted at the interfaces with the systems of sound and the systems of meaning (Bocci 2013).

5. Discussions on how elements enter syntax are given in Rizzi (2015, 2016, 2017) in terms of, respectively, labelling, merge systems and parameters.

6. Throughout this work, I shall use the term "uncanonical" over "marked" (see Haspelmath 2006 for a discussion on the role of the term markedness).
I here adopt a series of functional sequences that will turn relevant for the analysis of the theoretical prediction presented in §3 and the empirical data discussed in §4.

As for the Complementizer Phrase (CP), I will focus only on the positions hosting topicalized elements (TOPIC), focalized constituents (FOCUS) and “highlighted” adverbials (MOD, Rizzi 2004), discussed in the map of the fine structure of the Left Periphery (henceforth LP) discussed in Rizzi (1997, 2001, 2004) and Rizzi & Bocci (2017), given in (3).

(3) The fine structure of the Left Periphery (Rizzi & Bocci 2017)

[FORCE [TOPIC [INT [TOPIC [FOCUS [TOPIC [MOD [TOPIC [QEMB [FIN [IP [...]]]]]]]]]]]]

Different types of subjects target different positions in the syntactic architecture. The highest position of the Inflectional Phrase (IP) hosting subjects (Rizzi 2007, Rizzi 2015) is “obligatory” realized. This position satisfies the subject criterion, which expresses the classical EPP feature (Rizzi 2007) in cartographic terms. As for the landing site(s) of “canonical” subjects, I will discuss SUBJ and EPP adopting a cartography of subject positions proposed by Cardinaletti (2004), given in (4). Furthermore, EPP has also been analysed as a locus of generation of expletives (cf. Vikner 1995).

(4) Cartography of subject positions (Cardinaletti 2004)

[SUBJ [EPP [AGRS]]]

Questions of movement and interpretation of criterial heads are related to other domains of the syntactic architecture, such as the functional projections within the IP related to tense, mood and aspect of the utterance. As for this work, I adopt the map of invariant ordering clausal functional projections in (5), drawn from cross-linguistic evidence presented in Cinque (1999). Due to the nature of this work (which cannot provide an in-depth analysis of the semantic functions of the functional projections), the hierarchy will be discussed in §3 and §4 under the label ADV.
Cinque (1999)’s hierarchy of adverbs

\[
\begin{align*}
&MoodSpeech\text{Act} & MoodEvaluative & MoodEvidential \\&Mod\text{Epistemic} & TPast & TFuture & ModIrrealis \&Mod\text{Necessity} & Mod\text{Possibility} & Asp\text{Habitual} \&Asp\text{Repetetive} & Asp\text{Frequentative}(i) & Asp\text{Volitional} \&Asp\text{Celerative}(i) & TAnterior & Asp\text{Terminative} \&Asp\text{Continuative} & Asp\text{Perfect} & Asp\text{Retrospective} \&Asp\text{Prospective} & AspSG\text{.Completive}(i) & AspPl\text{.Completive} \&Asp\text{Instrumental} & Asp\text{Matter} & Asp\text{Manner}
\end{align*}
\]

Schweikert (2005) proposed an enrichment of Cinque (1999)’s hierarchy, adding a layer of complements and prepositional phrases, which is here presented in (6). Similarly to the hierarchy of adverbs, I will refer to these elements under a unique label PP.

(6) Hierarchy of complements

\[
\text{Temporal} > \text{Locative} > \text{Comitative} > \text{Benefactive} \\
> \text{Reason} > \text{Source} > \text{Goal} > \text{Malefactive} \\
> \text{Instrumental} > \text{Matter} > \text{Manner}
\]

Belletti (2004) has shown the existence of a further layer of scope-discourse (Topic, Focus) positions in the periphery of the vP area / low IP area, as given in (7). I will refer to these positions as LowIP.

(7) Low IP area

\[
\text{[Top [... [Foc [... [Top]]]]]}
\]

Finally, I adopt a classical architecture of the layer vP, the locus of generation of arguments, as given in (8). As mentioned with respect to the hierarchies, the quantitative nature of this work does not discuss in detail the cartography of arguments within the vP (Ramchand 2008, Si 2019), or the nature of the verb (e.g. intransitive). Here, only a minimal typology (subjects, objects and indirect objects) is provided. When the class of the element is not specified, I refer to these positions as ArgvP.

(8) vP

\[
\text{[External Argument(s)] [V [... [V [Internal Argument]]]]}
\]

7. Similarly, fine-grained analysis of case marking have been provided in Caha (2009) and Zompi (2017).
The maps presented from (3) to (8) are reconsidered in terms of loci of generation or landing sites in Table 1.

Given the relevant discourse requirements such as several topics in one sentence targeting different position in the tree, one might expect that languages would not allow "ungrammatical" patterns. Indeed, principles, such as locality ([Rizzi 1990], [Belletti 2018]), reduce the "freedom" of movement syntactic elements in the map.

The theory of locality in terms of featural Relativized Minimality (henceforth, fRM [Rizzi 1990, 2004; Starke 2001]) has played a major role in the interaction between cartographic maps and basic operations of grammar such as movement. In a nutshell, the landing position turns inaccessible, or less accessible, for an element to move to, if a similar element hierarchically intervenes between the generation site and the landing position. According to the theory of intervention in terms of fRM, the crucial property is not the amount of material that can be considered as intervener, but rather its quality.

If the syntactic constituent that has to be displaced and the intervener share sets features relevant for locality, ungrammatical structures ([Rizzi 1990]) or slower parsing effects crosslinguistically arise in adult grammars ([Frauenfelder, Segui & Mehler 1980]).

Interventions effects also show clear asymmetries in the comprehension and production of structures in typical development ([Friedmann, Belletti & Rizzi 2009]), atypical development ([Durrleman et al. 2015]) and in language pathology ([Grillo 2008]). Similar asymmetries are found in studies in quantitative computational syntax: [Samo & Merlo (2019)] extracted grammatical object relative clauses in large-scale corpora of

Table 1: Nature (generation site or landing site) of functional projections (and related references).

<table>
<thead>
<tr>
<th>Functional Projection</th>
<th>Type of locus</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOPIC (Rizzi 1997)</td>
<td>Landing Site</td>
</tr>
<tr>
<td>FOCUS (Rizzi 1997)</td>
<td>Landing Site</td>
</tr>
<tr>
<td>MOD (Rizzi 2004)</td>
<td>Landing Site</td>
</tr>
<tr>
<td>SUBJ (Rizzi 2007)</td>
<td>(Obligatory) Landing Site</td>
</tr>
<tr>
<td>EPP (Cardinaletti 2004)</td>
<td>Generation Site / Landing Site</td>
</tr>
<tr>
<td>ADV (Cinque 1999)</td>
<td>Generation site</td>
</tr>
<tr>
<td>PP (Schweikert 2005)</td>
<td>Generation site</td>
</tr>
<tr>
<td>LOWIP (Belletti 2004)</td>
<td>Landing Site</td>
</tr>
<tr>
<td>ARGVP</td>
<td>Generation Site</td>
</tr>
</tbody>
</table>

8. The interaction between maps and locality has been debated in the literature ([Abels 2012; Rizzi 2013]). The study of locality here might provide a "further explanation" for the functional sequences ([Rizzi 2013: 213]).
Italian and English showing that the observed counts of mismatch configurations of a set of morphosyntactic features were higher than the expected counts based on sentences where movement was not involved, while the observed counts of matching configurations were lower than expected.

Here, the notion of similarity is based on classes of features provided in Rizzi (2004: 243: 61). Due to the nature of this paper, I only focus on two classes of features, namely argumental and modifier features. The generation sites can therefore be classified in terms of features: ARGVP bear argumental features, whereas ADV and PP bear modifier features.

To sum up, languages do not exhibit random word orders, as quantitatively shown in classical ”free word order” languages such as Latin and Ancient Greek on the basis of large-scale annotated treebanks (Guilordava & Merlo 2015). Natural languages have ”canonical” orders and trends for a subset of ”uncanonical” orders. These trends are regulated, among others, by the principles of locality.

I shall investigate whether it is possible to quantify this level of analysis in a series of treebanks from one language. German is a suitable candidate, since it has been described in the literature as a language extremely conditioned by locality effects: strict restrictions on multiple elements in the ”left” of the clause (bottleneck effect), but a high degree of freedom in the ”middle” and in the ”right” of the clause (scrambling). These notions will be presented in §2.2.

2.2 Restrictions and freedom of constituents in German

Word orders in German have been investigated early on in the history of linguistics (since Erdmann 1886) and in-depth in generative syntax (Haider 2010 inter alia).

German is described as a verb second language (henceforth V2; Samo 2019 for a cartographic approach) in the sense that the inflected verb fills the ”second” linear position in main clauses following exactly one constituent. In the presence of a complex verbal forms (e.g. auxiliaries, modals, separable particles, etc.) only one part (the hierarchically higher) targets the second position, while the other remains in a position at the end of the structure. Different types of constituents (subjects, arguments, adverbials) bearing relevant discourse features may undergo movement to the left of the inflected verb creating the V2 structure, as given in (9).

9. A pure ”linear” position second element can only be referred to as a byproduct of subjacent syntactic phenomena. As noted by Zwart (1992: 76), grammars are not sensitive to notions like “first” or “second”.

8
The position of the verb has played an important role in the history of the descriptions of the syntax of German. Indeed, the functional projection that the verb targets (a position in the CP, since Den Besten 1983) represents an hallmark for the notions of restrictions and freedom of movement in German: the part of the structure before (higher than) the inflected verb (Vorfeld 'prefield') seems inaccessible to more than one syntactic constituent, whereas the section right after the inflected verb (Mittelfeld 'Middlefield') is depicted as a locus of extreme flexibility for the movement of syntactic elements.

As for the Vorfeld, only one constituent can target the syntactic position in front of the inflected verb. In other words, V3 orders, in which the verb targets the "third" linear position as those given in (10), are ruled out by the grammar of German.

Earlier accounts (Roberts 2004) expressed this violations in terms of a "bottleneck effect". The fronted element bearing a generalized EPP feature blocks the movement of further elements in the LP. On (literally) the other side (of the verb), the Mittelfeld is described as a locus of a phenomenon called scrambling (Lenerz 1977, Frey 2004, Hinterholzl 2006.), according to which syntactic constituents seems to be freely placed, as shown in (11), with different degrees of acceptability.

9. I do not mark here a focus features on the item dem professor 'to the professor'
(11) a. *Der Student hat dem Professor das Buch gegeben.*
 The student gave the handbook to the professor.

b. *Der Student hat das Buch dem Professor gegeben.*

c. *Das Buch hat der Student dem Professor gegeben.*

d. *Das Buch hat dem Professor der Student gegeben.*

e. *Dem Professor hat der Student das Buch gegeben.*

f. *Dem Professor hat das Buch der Student gegeben.*

Recently, Samo (2019) proposes that these two phenomena, ”bottleneck effect” and scrambling, might be explained by the same principle of locality. This (criterial) approach claims that the moved element targets a criterial position in both the Vorfeld and the Mittelfeld.

The fronted element in the Vorfeld targets its criterial position in the Left Periphery (SpecTopicP, SpecFocusP, SpecModP) according to the features it bears and creates a Spec-Head configuration with the inflected verbal head. Scrambled elements share properties with criterial configurations, since they are not felicitous answers in out-of-the-blue contexts (Lenerz 1977) and, as noted by Müller & Sternefeld (1993), are strictly clause-bound. This latter point is translated in terms of criterial freezing in Samo (2019).

Following a criterial approach, scrambled elements may target criterial positions both in the Left Periphery to the right of the inflected verb and in the Low IP area discussed in Belletti (2004). A criterial approach to V2 and scrambling predicts restrictions on the ”freedom” of movement of constituents. The ungrammaticality of certain reorderings are due to standard fRM effects in both Vorfeld (building on the lack of multiple topics in English, Rizzi 2013) and the Mittelfeld. As shown in (11), reorderings seems however accepted given the right featural configurations of scrambled elements.

This work focuses on the frequencies of reorderings. Is it possible to have quantitative insights on scrambling? Does similarity play a role in
"uncanonical" orders? Are frequencies correlated with the loci of generation of syntactic constituents?\footnote{12}

A transformation of cartographic maps into UD queries in order to use large-scale syntactically annotated corpora is presented in §3, while §4 shall investigate empirical data extracted from syntactically annotated treebanks of German.

3 Map\textit{ping} cartography to dependency structures

3.1 Towards a \textit{Quantitative Cartographic Syntax}

This work is inspired by the framework of Quantitative Computational Syntax (Merlo 2016 and related works) which uses large-scale resources and simple computational models in order to answer quantitative linguistic questions and provide new linguistic insights. Frequency, intended here as differential in counts, is representative of underlying grammatical properties. It is expected that the observed counts (frequency) in grammatical structures with intervention effects involving similar elements should appear with a lower frequency than the observed counts of reordering involving dissimilar elements. In other words, the closer the similarity, the less frequent an element will cross another element which is higher in the structure.

To gather data from large-scale resources, a translation of cartographic configurations in syntactic annotation schemata is required. In this work, I translate cartographic maps in terms of Universal Dependencies (henceforth UD, Nivre 2015, Zeman, Nivre & Abrams 2020). UD offer a rich set of treebanks from hundreds of languages, within a variety of text genres, annotated under the same guidelines. UD represent thus a tool for both intralinguistic investigations (in terms of registers, e.g. Haegeman 1990) and crosslinguistic analyses.

In this respect, cartographic results might shed light on discourse elements in corpora, only relying on syntactic clues without any prosodic information, as it is the case of reorderings of "canonical" orders.

Using large scale corpora adds a quantitative dimension to the qualitative analysis of functional projections provided in cartographic studies.

\footnote{12. I leave aside a discussion on expected and observed counts in intervention effects in the spirit of Samo & Merlo (2019). This type of analysis would add a computational side in future research on reorderings, cartography and locality in German.}
3.2 Mapping Universal dependencies to cartographic projections

The UD syntactic annotation (based on De Marneffe et al. 2014) presents 37 Universal syntactic relations. The guidelines suggest that only overtly realized strings of texts should be annotated. That means that, for example, in a null subject language like Italian (Rizzi 1982), no subject dependency will appear if the annotated sentence does not have an overt subject.

Only the subset of nominal and modifier relations at the clausal level are considered here. A preliminary analysis on the language under investigation in §4 (German) restricted our set of investigation to six dependencies, namely active subjects (in UD annotation labelled as nsubj), objects (obj), further arguments and complements (iobj, obl), adverbialelements advmod and expletive (expl).

Syntactic dependencies have three main components. A governor, a dependent and a direction. For example, a SVO structure in English has the following configuration: two arrows leaves from the root represented by the lexical verb. The relation nsubj is dependent to the left, while the relation obj is dependent to the right.

If the “canonical” word order changes, the dependencies vary their directions. In the case that the internal argument (object) targets the LP as in (1), both arguments nsubj and obj are dependent to the left. The combinations of these three features (governor, dependent and direction) in one language provide ”canonical”, ”uncanonical” and ungrammatical orders.

However, there is no direct one-to-one mapping between cartographic functional projections and syntactic universal dependencies. Not every functional projection corresponds to a specific dependency: a syntactic dependency might represent sets of functional projections (e.g. expl or iobj as it will be discussed in this section) or no dependency represents non-overt elements of grammar (e.g. null subject Rizzi 1982).

I here present the six syntactic relations and their interactions with cartographic maps. I start with argumental elements (obj, iobj), then move to modifiers (obl, advmod) and finally discuss the dependencies related to the subject criterion (nsubj, expl). Table 2 shows a preliminary mapping in terms of generation and landing sites. The discussion here

14. After a preliminary analysis, due to the very small frequency in the treebanks under investigation in §4, the dependencies of dislocated, vocative and discourse were not analysed further.
15. Here only active structures are investigated, since passive structures imply a further layer of analysis involving the movement of the object and the verb under a smuggling approach (cf. Collins 2005).
Table 2: Universal dependencies syntactic relations (Dep) and functional projections according to the generation or landing sites.

<table>
<thead>
<tr>
<th>Dep</th>
<th>Generation</th>
<th>Landing site</th>
</tr>
</thead>
<tbody>
<tr>
<td>obj</td>
<td>ARGVP</td>
<td>LOWIP, TOPIC, FOCUS</td>
</tr>
<tr>
<td>iobj</td>
<td>ARGVP</td>
<td>LOWIP, EPP, TOPIC, FOCUS</td>
</tr>
<tr>
<td>obl</td>
<td>PP</td>
<td>LOWIP, TOPIC, FOCUS, MOD</td>
</tr>
<tr>
<td>advmod</td>
<td>ADV</td>
<td>TOPIC, FOCUS, MOD</td>
</tr>
<tr>
<td>nsubj</td>
<td>ARGVP</td>
<td>LOWIP, (obligatory) SUBJ, TOPIC, FOCUS</td>
</tr>
<tr>
<td>expl</td>
<td>EPP</td>
<td>(obligatory)</td>
</tr>
</tbody>
</table>

is based on the grammar of German.

obj The syntactic dependency obj represents internal arguments in transitive/ditransitive verbs. The same dependency is used both for objects in their generation position, where minimal discourse properties take place, and for displaced objects. Mapping obj to the cartographic maps, it represents one VP argument(ARGVP), a Topic or Focus in the Low IP area (LOWIP) or in the LP (TOPIC, FOCUS).

iobj The relation iobj represents other nominal phrases part of the argumental structure of the verb than subjects and objects (e.g. recipient of ditransitive verbs). Theoretically speaking, iobj elements represent other argumental features generated in the vP layer (ARGVP). Movement to both peripheries is allowed if the element bears relevant features to target the positions of Topics of Focus (LOWIP, TOPIC, FOCUS). Other elements annotated as iobj are, for example, experiencers of impersonal psych-verb constructions (Mohr 2005), as the natural occurring example extracted from one of the treebanks which will be presented in §4, given in (12).

(12) **Mir** drängt sich aber der Eindruck **auf**
me.DAT imposes REFL but the impression PARTICLE.
’But I get the impression’

In case of experiencers annotated as (iobj), this element targets the EPP position (cf. Samo 2019: 169), while the subject targets a low IP area projection.

17. Beyond the scope of this paper is the further challenge represented by the interpretative properties of those cases of movement of objects with the verb within the IP (cf. Belletti & Rizzi 2012).
The relation oblique obl19 has been adopted for phrases functioning as a non-core arguments of the verbal domain ad represent the set of complements, modifiers and prepositional phrases (temporal, locative, etc.) discussed in Schweikert (2005). Mapping obl to the cartographic architecture, these elements are generated in PP and can move to the peripheries, if they bear Focus and Topic features (LOWIP, TOPIC, FOCUS) or they are "highlighted" (cf. Rizzi 2004) in ModP (MOD).

The adverbial modifier labelled as advmod20 denotes adverbial phrases modifying predicates. UD differentiates adverbials realized as adverbs (advmod) and adverbials realized by maximal projections (obl), but it does not differentiate adverbials from a subset of modifier at the DP level. Thus, a query adding limits to the retrieval is required. Adopting (Cinque 1999)'s hierarchy, advmod represent the functional projections where adverbs are generated (ADV). Most of adverbs can move to the Left Periphery if they bear Focus and Topic features (TOPIC, FOCUS) or they are "highlighted" in ModP (MOD).

The syntactic relation (nsubj)21 represents the active subject of a sentence22. UD however does not annotate absent subjects, such as the cases of sentences with null subjects (cf. Rizzi 1982). Subjects are generated as arguments (external and internal according to the nature of the verb) in the vP layer (ARGVP), but syntactically obliged to move to SpecSubjP (SUBJP). Naturally, they might also be topicalized/focalized in the LP (TOPIC, FOCUS). Subjects can also target the low IP area (cf. Frey 2004) if a iobj or an expletive satisfies the subject criterion (LOWIP).

The relation expl23 captures all form of expletives on arguments. Indeed, the term expletives in the UD schemata is used also for expletives of other arguments and reflexives. Here, I only investigate those expletives satisfying the subject criterion. Since expletives cannot be moved to position in the LP, I predict that they can only be located in their generation (criterial) position (EPP).

Merging the results of Table 2 with the syntactic configurations presented in §2.1, we can envisage a reduced cartographic structure with loci of generation and movement for labels of syntactic dependencies, as

22. UD has a specific query for passive structures (nsubj: pass), which are not investigated in this work.
given in Table 3 (with hook brackets indicating `<generation loci>`, bold **obligatory landing sites** and italic **landing sites**).

3.3 Hypotheses

A series of predictions can be made according to the results given in Table 3. As a matter of fact, the orders of generation loci (represented by hook brackets) should give us "canonical" orders of these constituents.

The highest generation locus is represented by expletives, while the lowest are the arguments. Because of the subject criterion in German, subjects obligatorily move to a high functional projection in the IP. Leaving aside impersonal constructions of the type of (12), the dependencies *nsubj* and *expl* will be analyzed under the unique label *subj* (when a clearer differentiation is not required) since they both represent the obligatory criterial position.

A map is given in (13, > meaning precedence), representing a definition of ”canonical” order.

(13) subj > advmod >obl > iobj > obj

From a quantitative point of view, a first research question investigates whether orders on the basis of generation are more frequent than reorderings. To have a better understanding and higher counts, ”canonical” orders are given as the occurrences of pairs of elements with respect to the subject, which is always realized, being German a non-null-subject language. This hypothesis can be stated in H_1.

H_1: For every pair of constituents, the frequencies of the relations with respect to subjects constituting the ”canonical order” should be more frequent than the frequencies of the reverse pattern.
A second hypothesis is based on locality. An element which is located lower in the structure should be able to cross an intervener with a higher frequency, if the two elements do not share classes of features predicted in fRM. Elements generated as arguments of the vP bear features belonging to the argumental class, while advmod and obl bear features of the modifier class. Naturally, the presence of further features such as Topic or Focus (quantificational) reduces intervention effects.

The classes of features, according to the nature of the elements, are given in (14).

(14) a. Argumental: nsubj, obj, iobj
 b. Modifier: advmod, obl

The second hypothesis H_2 takes similarity into consideration.

H_2: For every pattern of pair of constituents belonging to "uncanonical" orders, frequencies are reduced if the two constituents are similar in terms of classes of features.

In other words, I expect that the frequencies (in terms of proportions) of an element crossing an element higher in the structure would increase if there is mismatch of class of features.

The quantitative hypotheses presented here are to be contrasted to an H_0 hypothesis that would predict that grammatical properties are uncorrelated to observed frequencies (Merlo 2016, Samo & Merlo 2019).

H_1 and H_2 shall be explored in §4, since empirical data extracted from a set of treebanks in German annotated under the guidelines of UD are provided.

4 A quantitative study on German

The collection of frequencies of syntactic structures is operated on four syntactically annotated treebanks of German. Subsection 4.1 presents materials and methods, while subsection 4.2 will show the results and the relative discussion.

4.1 Materials and Methods

Materials The syntactic configurations are extracted from four syntactically annotated treebanks following the guidelines of Universal Dependencies (Zeman, Nivre & Abrams 2020) annotation scheme: the Hamburg Dependency Treebank (Borges Völker et al. 2019), the GSD tree-
Table 4: Treebanks, size and genres.

<table>
<thead>
<tr>
<th>Treebank</th>
<th>Trees</th>
<th>Tokens</th>
<th>Genres</th>
</tr>
</thead>
<tbody>
<tr>
<td>UD_German-HDT@2.6</td>
<td>189928</td>
<td>3589318</td>
<td>news, nonfiction, web</td>
</tr>
<tr>
<td>UD_German-GSD@2.6</td>
<td>15590</td>
<td>308378</td>
<td>news, reviews, wiki</td>
</tr>
<tr>
<td>UD_German-PUD@2.6</td>
<td>1000</td>
<td>22329</td>
<td>academic, fiction, nonfiction</td>
</tr>
<tr>
<td>UD_German-LIT@2.6</td>
<td>1922</td>
<td>42362</td>
<td>nonfiction</td>
</tr>
</tbody>
</table>

Methods All the materials is extracted with the Grew-match tool maintained by Inria in Nancy (http://match.grew.fr). The query retrieved sentences for which a variable \(x \) annotated with a dependency \(\text{dep}_x \) precedes a variable \(y \) annotated with another syntactic label \(\text{dep}_y \). The results will be presented here as frequency and inputed counts of frequency. An analysis on a sample of sentences has been manually conducted to detect the accuracy of the queries. Some natural occurring examples of the 30 combinations of patterns involving two constituents are given in Table 5.

The total number of dependencies (\(\text{obj}, \text{iobj}, \text{obl}, \text{advmod}, \text{expl}, \text{nsubj} \)) are also automatically retrieved from the treebanks, as given in Table 6.

27. http://match.grew.fr/_meta/UD_German-LIT@2.6_table.html (accessed 20.06.2020)
28. The query is as follows (with \(x \) and \(y \) indicating syntactic relations): pattern \{ verb -[dep_x]→ x; verb -[dep_y]→ y; x < y; \}
29. The tool adopted in the investigation provided only the first 1000 occurrences of the query and a proportion of exploitation of the treebank. Here frequency is calculated as a coefficient on the basis of these two data. This coefficient is calculated to provide a better understanding of a predictive tool. Given \(I \) as the input count, \(F \) the frequency of the pattern, and \(C \) the percentage of the exploitation of the corpus, \(I \) is derived with the formula \(I = (F \times (1 - C))/C + F \).
4.2 Results and Discussion

A first interesting result is that subjects cooccur with expletives only in the order [expl > subj] and the reduced size of the findings (712 occurrences representing a small portion of the corpus under investigation equal to the three per mille 0.003, of the total of subjects 30) shows that this order is a clear case of a reordering for scope-discourse semantics reasons, since the subject targets a Low IP peripheral position.

The frequencies of the syntactic relations cooccurring with the active subjects are given in Table 7.

As expected, proportions of frequencies strongly support that subjects in "canonical" order precede the other arguments (88% obj, 81% iobj). As for the elements belonging to the featural class of modifiers, subjects precede both obl (73%) and advmod (69%).

The proportions with respect to the reverse pattern is adopted for providing a first mapping between frequencies and cartographic prediction.

In (15), the proportion figures show the percentage of the relevant element crossing the subject. The results seem linearly similar to the

30. As for the reversed order [subj > expl], the query retrieved those cases of the expletive es in copular (Moro 1997) constructions introducing an embedded CP (e.g. treebank: PUD, ID: n01055008, Das Ziel dieser CRTC - Sitzungen ist es, Reaktionen von Teilhabern aus der Industrie und von der Öffentlichkeit zu bekommen "The goal of these CRTC sessions is [expl] to get responses from industry and public stakeholders."). Copular sentences might be treated as classical transitives and therefore the expl represents an object expletive.
Table 7: Frequencies of patterns involving subjects, % their proportion with respect to the reverse pattern and % subj the proportion with the number of subjects. The patterns in bold confirm the hypothesis.

<table>
<thead>
<tr>
<th>Pattern</th>
<th>freq.</th>
<th>%ce</th>
<th>%obj</th>
<th>Pattern</th>
<th>freq.</th>
<th>%ce</th>
<th>%obj</th>
</tr>
</thead>
<tbody>
<tr>
<td>nsubj > obj</td>
<td>123766</td>
<td>0.88</td>
<td>0.51</td>
<td>obj > nsubj</td>
<td>17659</td>
<td>0.12</td>
<td>0.07</td>
</tr>
<tr>
<td>nsubj > iobj</td>
<td>4466</td>
<td>0.81</td>
<td>0.02</td>
<td>iobj > nsubj</td>
<td>1045</td>
<td>0.19</td>
<td>0.01</td>
</tr>
<tr>
<td>nsubj > obl</td>
<td>113485</td>
<td>0.73</td>
<td>0.47</td>
<td>obl > nsubj</td>
<td>41957</td>
<td>0.27</td>
<td>0.17</td>
</tr>
<tr>
<td>nsubj > advmod</td>
<td>74699</td>
<td>0.69</td>
<td>0.31</td>
<td>advmod > nsubj</td>
<td>33588</td>
<td>0.31</td>
<td>0.14</td>
</tr>
</tbody>
</table>

Table 8: Frequencies of patterns involving objects, % their proportion with respect to the reverse pattern and % obj the proportion with the number of objects. The patterns in bold confirm the hypothesis.

<table>
<thead>
<tr>
<th>Pattern</th>
<th>freq.</th>
<th>%ce</th>
<th>%obj</th>
<th>Pattern</th>
<th>freq.</th>
<th>%ce</th>
<th>%obj</th>
</tr>
</thead>
<tbody>
<tr>
<td>obj > iobj</td>
<td>1219</td>
<td>0.19</td>
<td>0.01</td>
<td>iobj > obj</td>
<td>5185</td>
<td>0.81</td>
<td>0.03</td>
</tr>
<tr>
<td>obj > obl</td>
<td>45996</td>
<td>0.46</td>
<td>0.28</td>
<td>obl > obj</td>
<td>55047</td>
<td>0.54</td>
<td>0.33</td>
</tr>
<tr>
<td>obj > advmod</td>
<td>30761</td>
<td>0.40</td>
<td>0.19</td>
<td>advmod > obj</td>
<td>46007</td>
<td>0.60</td>
<td>0.28</td>
</tr>
</tbody>
</table>

However, H_1 cannot be fully confirmed. To confirm whether (15) is the proposed “canonical” order, further evidence is required, such as the syntactic patterns involving the other core element obj.

Predicted canonical order in (13).

(15) adv (0.31) > obl (0.27) > iobj (0.19) > obj (0.12).

Similar asymmetries are found with objects. Objects, which are generated lower, can cross indirect objects in a restricted set of grammatical sentences when they cooccur (19%). The situation is totally reversed in the case of objects crossing elements whose class of features belong to the modifier group. Elements annotated as obj precede advmod (40%) and obl (46%) at a higher proportions than iobj and nsubj (12%).

These results provide further evidence for a theory of locality, in which a mismatch of class of features seems suggesting a higher degree of “freedom” of movement in the structure.

To detect the last layer of the “canonical” order, I investigate whether the pattern advmod preceding obl is more frequent than the reverse pattern.

As shown by Table 8, advmod seems preceding oblique. These results are in the direction of confirming H_1, suggesting that (a subset of) adverbs are clearly generated higher than oblique. However, a finer-grained search in treebanks of the label ADV and PP with more detailed
Table 9: Frequencies of patterns involving adverbs and obliques, % their proportion with respect to the reverse pattern and % the proportion with the number of oblique (the biggest set). The pattern in bold confirms the hypothesis.

<table>
<thead>
<tr>
<th>Pattern</th>
<th>freq.</th>
<th>%</th>
<th>%obl</th>
<th>Pattern</th>
<th>freq.</th>
<th>%</th>
<th>%obl</th>
</tr>
</thead>
<tbody>
<tr>
<td>advmod > obl</td>
<td>62400</td>
<td>0.61</td>
<td>0.25</td>
<td>obl > advmod</td>
<td>40167</td>
<td>0.39</td>
<td>0.17</td>
</tr>
</tbody>
</table>

Table 10: Frequencies of patterns involving adverbs and obliques, % their proportion with respect to the reverse pattern and of co-occurring elements (CE); Match = type of match or mismatch; Landing Sites = available landing sites for crossing the intervener.

<table>
<thead>
<tr>
<th>Pattern</th>
<th>%CE</th>
<th>Match</th>
<th>Landing Sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>obj > nsubj</td>
<td>0.12</td>
<td>Argumental</td>
<td>TOPIC, FOCUS</td>
</tr>
<tr>
<td>iobj > nsubj</td>
<td>0.19</td>
<td>Argumental</td>
<td>TOPIC, FOCUS, EPP</td>
</tr>
<tr>
<td>obj > iobj</td>
<td>0.19</td>
<td>Argumental</td>
<td>TOPIC, FOCUS, LOWIP</td>
</tr>
<tr>
<td>obl > nsubj</td>
<td>0.27</td>
<td>Mismatch</td>
<td>TOPIC, FOCUS, MOD</td>
</tr>
<tr>
<td>advmod > nsubj</td>
<td>0.31</td>
<td>Mismatch</td>
<td>TOPIC, FOCUS, MOD</td>
</tr>
<tr>
<td>obl > advmod</td>
<td>0.39</td>
<td>Modifier</td>
<td>TOPIC, FOCUS, MOD</td>
</tr>
<tr>
<td>obj > advmod</td>
<td>0.40</td>
<td>Mismatch</td>
<td>TOPIC, FOCUS</td>
</tr>
<tr>
<td>obj > obl</td>
<td>0.46</td>
<td>Mismatch</td>
<td>TOPIC, FOCUS</td>
</tr>
</tbody>
</table>

queries is required to provide further insights concerning the locality issues within the IP.

The data in Table (9) show another asymmetry. The featural class of modifiers represents a weaker intervener if it is taken as a single class with respect to the argumental class. But this conclusion needs to be revised, as already predicted in Rizzi (2004), since the class of modifier is an heterogeneous group based on a open class of subtypes of features in the spirit of the functional labels discussed in (Cinque 1999), such as Modality, Tense, Mood, Aspect, Voice, and so on (Rizzi 2013:218).

Finally, let us discuss H_2. To do so, we compare the proportions of those patterns involving an element crossing an intervener higher in the clause. Furthermore, another dimension seems related to the sets of possible landing sites where the element can land to in order to cross the intervener (given that it bears the relevant features to target criterial positions also in the LP).

Table (10) summarizes the results. Comparing the proportions of the co-occurring patterns in Table (10), the lowest scores (obj > nsubj 12%, iobj > nsubj, obj > iobj 19%) belong to the combinations in which a lower argument crosses a higher argument.

The highest scores, on the other hand, show a mismatch in the class of feature (obj > advmod 40%, obj > obl 46%).

The dependencies advmod and oblique crossing the subject in its criterial position require a further dimensions of features to target the LP,
therefore their proportion partially dropped (obl \textgreater ns\,subj 27\%, adv\,mod \textgreater ns\,subj 31\%). The class of modifier features has similar frequencies (obl \textgreater adv\,mod 39\%), confirming that this group is less homogeneous than the class of argumental features.

To sum up, the results presented here support an hypothesis that reorderings are limited by locality. Translating these results in theoretical terms, the data presented here suggest that scrambling is related to locality, as predicted by a criterial approach to the Cartography of German (Samo 2019).

Further research should take into consideration fine-grained tools to detect issues of locality, with respect to morphosyntactic features. The marginality observed in grammaticality judgments should be confirmed by frequencies in large-scale treebanks, in the spirit of the Quantitative Computational Syntax approach (Merlo 2016).

5 Conclusions

In this paper, I carried out a quantitative analysis on the reorderings in German, a language which has represented an interesting case in the literature allowing restrictions and freedom of movements of the constituents in different areas of the structures.

After having provided a model mapping syntactic dependencies into cartographic maps, I have investigated four treebanks annotated with UD. The results show that frequencies, in terms of proportion for the two orders given by the relations of precedence of two constituents, confirm the predicted generation order as "canonical".

The results also show that locality effects play a role: the more dissimilar two elements, the more a lower element can cross an intervener higher in the structure.

Cartographic studies are thus providing an important formal tool with a strong heuristic capacity: analyses on large-scale treebanks may add a quantitative dimension to the already established qualitative dimension, providing further insights.

6 Acknowledgements

This research was supported by the grant 18ZDJ06 Studies on Language Acquisition and Cognition from a Cartographic Perspective of "the Fundamental Research Funds for the Central Universities" (Science Foundation of Beijing Language and Culture University).
Thanks to Paola Merlo, Luigi Rizzi, Fuzhen Si, Francesco-Alessio Ursini and the audience of the Séminaire de Recherche en Linguistique (University of Geneva) for helpful insights and comments in different stages of this paper. I gratefully thank Tián Yinghùì for her help in the collection of preliminary data.

References

and Physics, Charles University. [http://hdl.handle.net/11234/1-3226].